Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Tipo de estudio
Intervalo de año de publicación
1.
Oncogene ; 43(18): 1369-1385, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38467851

RESUMEN

Breast cancer is the most prevalent type of cancer in women worldwide. Within breast tumors, the basal-like subtype has the worst prognosis, prompting the need for new tools to understand, detect, and treat these tumors. Certain germline-restricted genes show aberrant expression in tumors and are known as Cancer/Testis genes; their misexpression has diagnostic and therapeutic applications. Here we designed a new bioinformatic approach to examine Cancer/Testis gene misexpression in breast tumors. We identify several new markers in Luminal and HER-2 positive tumors, some of which predict response to chemotherapy. We then use machine learning to identify the two Cancer/Testis genes most associated with basal-like breast tumors: HORMAD1 and CT83. We show that these genes are expressed by tumor cells and not by the microenvironment, and that they are not expressed by normal breast progenitors; in other words, their activation occurs de novo. We find these genes are epigenetically repressed by DNA methylation, and that their activation upon DNA demethylation is irreversible, providing a memory of past epigenetic disturbances. Simultaneous expression of both genes in breast cells in vitro has a synergistic effect that increases stemness and activates a transcriptional profile also observed in double-positive tumors. Therefore, we reveal a functional cooperation between Cancer/Testis genes in basal breast tumors; these findings have consequences for the understanding, diagnosis, and therapy of the breast tumors with the worst outcomes.


Asunto(s)
Neoplasias de la Mama , Biología Computacional , Regulación Neoplásica de la Expresión Génica , Humanos , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Femenino , Biología Computacional/métodos , Metilación de ADN , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Línea Celular Tumoral , Masculino , Epigénesis Genética
2.
Elife ; 122023 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-37818717

RESUMEN

In vivo, bacterial actin MreB assembles into dynamic membrane-associated filamentous structures that exhibit circumferential motion around the cell. Current knowledge of MreB biochemical and polymerization properties in vitro remains limited and is mostly based on MreB proteins from Gram-negative species. In this study, we report the first observation of organized protofilaments by electron microscopy and the first 3D-structure of MreB from a Gram-positive bacterium. We show that Geobacillus stearothermophilus MreB forms straight pairs of protofilaments on lipid surfaces in the presence of ATP or GTP, but not in the presence of ADP, GDP or non-hydrolysable ATP analogs. We demonstrate that membrane anchoring is mediated by two spatially close short hydrophobic sequences while electrostatic interactions also contribute to lipid binding, and show that the population of membrane-bound protofilament doublets is in steady-state. In solution, protofilament doublets were not detected in any condition tested. Instead, MreB formed large sheets regardless of the bound nucleotide, albeit at a higher critical concentration. Altogether, our results indicate that both lipids and ATP are facilitators of MreB polymerization, and are consistent with a dual effect of ATP hydrolysis, in promoting both membrane binding and filaments assembly/disassembly.


Asunto(s)
Actinas , Nucleótidos , Actinas/metabolismo , Nucleótidos/metabolismo , Polimerizacion , Adenosina Trifosfato/metabolismo , Lípidos , Proteínas Bacterianas/metabolismo
3.
Biochem Biophys Res Commun ; 511(3): 658-664, 2019 04 09.
Artículo en Inglés | MEDLINE | ID: mdl-30826061

RESUMEN

Mitochondria play a vital role in proliferation and differentiation and their remodeling in the course of differentiation is related to the variable energy and metabolic needs of the cell. In this work, we show a distinctive mitochondrial remodeling in human induced pluripotent stem cells differentiated into neural or mesenchymal progenitors. While leading to upregulation of the citrate synthase-α-ketoglutarate dehydrogenase segment of the Krebs cycle and increased respiratory chain activities and respiration in the mesenchymal stem cells, the remodeling in the neural stem cells resulted in downregulation of α-ketoglutarate dehydrogenase, upregulation of isocitrate dehydrogenase 2 and the accumulation of α-ketoglutarate. The distinct, lineage-specific changes indicate an involvement of these Krebs cycle enzymes in cell differentiation.


Asunto(s)
Ciclo del Ácido Cítrico , Células Madre Mesenquimatosas/metabolismo , Mitocondrias/metabolismo , Células-Madre Neurales/metabolismo , Diferenciación Celular , Línea Celular , Humanos , Células Madre Pluripotentes Inducidas/citología , Células Madre Pluripotentes Inducidas/metabolismo , Células Madre Mesenquimatosas/citología , Modelos Biológicos , Células-Madre Neurales/citología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA